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Abstract

Previous works in the area of signal constellation design to minimize symbol error

rate have dealt with the problem at asymptotic SNR values. Optimal constellations

which achieve minimum possible symbol error rate or bit error rate at any given SNR

have not been established. In this work we come up with solutions to this problem

for 1 and 2 dimensional constellation for AWGN and fading channels. Shape of

optimal signal constellations varies with SNR value and this fact has interesting

implications for fading channel. Depending on the channel gain, the transmitter

decides the amount of power and which geometry to use to have a minimum average

symbol or bit error rate, optimal solutions to this problem are arrived at. Optimal

signal constellations arrived at are compared with the best ones known in literature

to show the improvements. We show that necessary conditions in literature for

optimality of 2 dimensional constellations at asymptotically high SNR values are

inaccurate and thus, arrive at a new set of necessary conditions.
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Chapter 1

Introduction

Signal constellation, a set of symbols on which the transmitter encodes the message

is fundamental to any form of digital communication, both wireline and wireless. 1-

Dimensional Pulse Amplitude Modulated constellations were the basis of amplitude

modulation. Idea of combining phase and amplitude modulation was introduced

by [1],[2] and refined by [3] leading to 2 dimensional constellations as we see today.

Symbol error rate which depends on the total power in the constellation and the

coordinates of symbols characterizes the constellation and the performance of the

communication system. Bit error rate, another important quantity characterizing

the performance of communication system, depends on both coordinates of symbols

and the labeling of the symbols. For a fixed power it is important to understand

the constellations minimizing the symbol error rate and the work of foshcini et.al is

a landmark contribution in this direction [4].

1.1 Motivation

Given a fixed average power at the transmitter, channel capacity helps one under-

stand the maximum number of bits that can be reliably transmitted per usage of

channel and coding theory has helped in realizing the goal of achieving the same.

On the same lines we want to answer the question that given a fixed average power

at the transmitter and a fixed signal constellation size, what is the minimum sym-

1



2

bol/bit error rate that can be achieved and which signal constellation achieves it.

Work of Foshcini et.al in the context of 2-D constellations gives the solutions to

this problem but only at asymptotically high SNRs in AWGN channel and the work

of Makowski et.al [5] in the context of 1-D constellation characterizes the optimal

solution at any SNR but only in AWGN channel. These gaps in the understanding

of best signal constellations act as the driving force of our work.

1.2 Contribution

Our contributions towards filling the gaps in the understanding of optimal constel-

lations are,

• Necessary conditions for optimality in terms of SER/BER in AWGN channel

for 2-D constellation at asymptotic SNR are derived. It turns out that charac-

terization given by Foschini et.al for asymptotic optimality is not accurate and

we show it through a counterexample. Optimal 2-D constellation at asymp-

totic SNR values in AWGN and rayleigh fading channel are arrived at and are

shown to form a lattice of equilateral triangles.

• For any fixed SNR, we arrive at necessary conditions for optimality of 1-D

constellation in terms of SER in a given fading channel. We come up with

optimal solutions for both SER/BER in both AWGN and fading channels.

• For the case of 2-D constellations, optimal signal sets (8 and 16 point) in terms

of SER/BER in AWGN channel which depend on SNR value are arrived at.

1.3 Organization

The organization of thesis is as follows, in the first two sections of the second chapter

we present the system model and general formulation of the problem followed by

literature survey on the work that has been done on some aspects of the problem.

In the first section of third chapter we formulate the optimization problem for 1-D
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and 2-D constellations at asymptotically high SNRs in terms of SER/BER in both

AWGN and fading channels. In the next section we come up with the necessary con-

ditions for optimality in terms of SER/BER in AWGN channel for 2-D constellations

followed by the section where we show the counterexample to Foschini’s necessary

conditions. In the second last section we show the optimal solutions for both 1-D

and 2-D constellations at asymptotes followed by the section where we conclude the

chapter.

In the fourth and fifth chapter our aim is to deal with the same problem for 1-D

and 2-D constellations but at finite SNRs. In the first section of fourth chapter we

formulate the optimization problem in terms of SER in fading channel as a convex

optimization problem and in the following section we derive the necessary conditions

for optimality in the same context. In the third section we analyze the bit error rate

optimization problem and in the second last section we show the optimization results

to show the lower bounds that can be achieved for 1-D constellations. At the end

we conclude the chapter in the last section.

In the first section of fifth chapter we come up with numerical optimization

framework for solving SER and BER optimization and in the next section we use

optimization procedures to show the optimal constellations and improvements for

the case of 8 and 16 point constellations in AWGN channel. In the first section of

sixth chapter we analyze the general adaptive transmit and constellation allocation

problem followed by convex formulation for the case of 1-D constellations. In the

second last section we show the optimization results to show the improvements

possible followed by the section on conclusion. In the last chapter we conclude

the whole work and describe the important future work which should follow this

contribution.



Chapter 2

Literature Survey

In this chapter we first describe the system model used in the work and then go on

to the general formulation of the problem. In the next section we explain in detail

the past work in the literature on particular cases of the problem and highlight the

gaps that are there in the current understanding of optimal constellations.

2.1 System Model

In this work we consider a synchronous digital communication system, where the

transmitter encodes the message to be sent in the form of symbols chosen from

a signal constellation. Signal constellation S = {s1, s2, ..sN}, representing the set

of N symbols where si ∈ <m m ∈ {1, 2} ∀ i is either 1 or 2 dimensional and

{c(1), c(2), ..c(N)} represents the bit labeling scheme, c : {1, ..N} → {0, 1}k here

k = dlog2Ne is the length of the label. The transmitter linearly modulates these

symbols on the transmitter pulse p(t) and the narrow band passband message signal,

mb(t) which is sent across the channel is given as

mb(t) =
∑
k

(sIr(k) + jsQr(k))p(t− kT ) (2.1)

Here T is the duration of the message symbol and r : {1, ...} → {1, ..N} represents

the function to select the symbol, sIr(K), s
Q
r(K) are the in phase and quadrature phase

4
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components of the symbol to be sent. The transmit symbol is sent across the channel

which can be AWGN or fading. Fading model considered in our work is frequency

flat and slow fading and we assume ideal coherent detection at the receiver. In

the case of AWGN channel, the receiver performs matched filter detection to decide

which symbol was sent. Hence the output of the receiver can be modeled as

rk = sk + nk

Here sk = sIk + jsQk is the symbol point from 2-D constellation and we can assume

quadrature phase component to be zero in case of 1-D constellation, and nk is

complex additive white gaussian noise, CN (0, σ2) . In case of fading channel the

output at the receiver is given as

rk = hsk + nk

Here h is the flat fading coefficient and since we assume coherent detection

h∗

|h|
rk = |h|sk +

h∗

|h|
nk

The decision device at the receiver partitions the 1-D or 2-D space into N decision

regions corresponding to each symbol and whenever the received symbol is outside

the decision region of the symbol that was sent error occurs. The general expression

for symbol error rate assuming equiprobable signalling is

PA
se(s1, ..sN) =

1

N

N∑
k=1

PA
se(s1, ..sN |sk)

P f
se(s1, ..sN) =

1

N

N∑
k=1

∫ ∞
0

PA
se(αs1, ..αsN |sk)f|h|(α)dα (2.2)

Here PA
se and P f

se correspond to symbol error in AWGN and fading channel respec-

tively and PA
se(..|si), P f

se(..|si) are the error probabilities given si is sent. On the

same lines we can come up with bit error rate. Bit error rate on the same lines is
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given as,

PA
be(s1, ..sN , c(1), ..c(N)) =

1

Ndlog2Ne

N∑
k=1

N∑
j=1

d(c(k), c(j))P (sj|sk) (2.3)

P f
be(s1, ..sN , c(1), ..c(N)) =

1

Ndlog2Ne

N∑
k=1

∫ ∞
0

N∑
j=1

d(c(k), c(j))P (αsj|αsk)f|h|(α)dα

Here PA
be and P f

be are bit error rate functions in AWGN and fading channel

respectively and P (sj|si) is the probability that sj is detected given si is sent.

2.2 General Problem Formulation

In this section we state a general formulation of the problem dealt with in this work.

Here we would state the optimization problem in such a way that the objective

function P f
e would take both symbol and bit error rate into account for an N point

constellation in both fading and AWGN channel.

Each symbol point si can be represented by its coordinates in <2 for 1-D/2-

D constellation. Error rate (symbol/bit) P f
e (s1, ..sN , c(1), ..c(N)) is dependent on

the positions of point, the coding scheme used and distribution of channel gain

{g = |h|2, fG(g)}. The general problem can be stated as

minP f
e (s1, ..sN , c(1), ..c(N)) (2.4)

subject to
N∑
i=1

‖si‖2
2 = c

The above problem is relevant as it helps define a limit below which one cannot

push the error rate for a fixed size and average power and what signal set to use

to achieve this limit. It is important to understand these solutions as we would see

later that these can be used in adaptive schemes in which power and signal set can

be adapted.
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2.3 Past Work

Multilevel Phase Modulation based communication systems were initially developed

by Doelz et.al in [6] and were shown to be efficient in bandwidth versus SNR trade-

off by Cahn [7]. Cahn analyzed the performance of phase modulated systems in

gaussian noise under coherent detection and phase comparison detection technique.

In this work itself Cahn gave insights on the idea of combining phase and amplitude

modulation and in [1] it was shown that as the number of bits per sample grow the

combination utilizes the transmit power more efficiently. Following this the work of

Hancock et.al [2] analyzed the performance of two types of transmission systems one

where amplitude and phase channels are uncorrelated and the second type where

the two streams are dependent and the second is shown to be superior. Work of

Camopiano et.al [3] showed the 2 dimensional signal constellation idea and coherent

demodulation of in phase and quadrature phase components independently, this is

fundamental to digital communications till date.

Finding best signal sets in terms of symbol error rate for constraints like peak

and average power were the next set of interesting problems which came into picture.

Some initial works in this direction were either heuristic or ad hoc. In [8] Lucky et.al

characterized the solution to the symbol error rate optimization problem illustrating

that at low SNRs phase modulation is useful and at higher SNRs a combination of

both. At low SNRs expression of error rate is shown to decrease with increase in the

perimeter of convex polygon enclosing the constellation, showing phase modulated

constellations as ideal in that range. In [9] C.Thomas et.al generated a set of 29 con-

stellations with size ranging between 4 and 128 and investigated them for optimum

designs. Next [10] proposed a really nice heuristic idea to look at the problem in

which points were allowed to take only discrete positions in the plane. This was the

first work which formulated this as an optimization problem though an approximate

one and solved it efficiently, thus proving to be an effective tool in obtaining near

optimum solutions. Each of these works had certain assumption which led to only

symmetrical solutions.
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The above works were followed by really significant work of Foschini et.al [4]. The

problem was looked at from the perspective of optimization formulation. Gradient

search based procedures were used to come up with the locally optimal solutions.

An important assumption of the work was asymptotic (large signal to noise ratio)

which meant that problem was unanswered at any finite SNR value. The main

problem while solving this problem was the fact that the objective function does

not have a closed form solution in terms of any general arrangement of points. In

[11] Craig proposed an elegant method for expressing symbol error rate function for

any arbitrary shaped decision region (arbitrary polygon) as a sum of one dimensional

finite integrals. It is important to understand that for a fixed relative arrangement of

points, exact symbol error rate expression can be written since the shape of decision

regions are known, implying that analyzing symbol error rate as a function of SNR

for a fixed relative arrangement is relatively easier. [12] exploits this and show

convexity of SER as a function of SNR under certain conditions. Actual difficulty

come when SNR is fixed and relative arrangement can be varied, in such a scenario

the objective function cannot be written in closed form. Interestingly the expression

for symbol error rate for a 1 dimensional constellation does have a closed form for

any arrangement and Makowski et.al in [5] come up with necessary conditions for

optimal constellation under any general energy constraint in AWGN channel.

A surge in the area of wireless communications gave rise to the same problem in

the context of fading channels and recent works in this direction focus on considering

a family of constellations defined by certain parameters and then optimize those

parameters at a fixed SNR. [13] came up with new expressions for various signal

sets in context of fading, which helped optimize the parameters of these signal sets

and come up with optimal ring ratios for signal sets. Recent works like [14] and

[15] come up with regular structures which perform better than QAM and have

less decoding complexity but of course are not optimum. [16] generalize the QAM

to a θ QAM family, arrive at exact symbol error expression and the parameter θ

is optimized, basically this general family captures symmetrical constellations like
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triangular QAM and square QAM in a nice fashion. The main limitation of the work

is that it gives optimal solutions within this symmetrical family of constellations.

Interestingly the problem of optimization of constellations (1-D/2-D) with re-

spect to bit error rate has not received as much attention as symbol error rate. The

problem in that case is not only of designing the constellation but also the labeling

scheme which makes it fairly difficult. But there are works in literature which deal

with proving optimal labeling for a fixed relative arrangement of symbols. [17] shows

that gray coding is optimal for PAM,QAM and PSK type of constellations. In [16]

the authors arrive at close to accurate expressions for bit error rate and show that

SQAM is optimal within θ QAM family in low SNR region and θ ≈ 65◦ in high SNR

range for an AWGN channel.

2.4 Conclusion

At the end of this section we can conclude that we still do not know “ the best”

2-D signal constellations in terms of SER/BER at a finite SNR in both AWGN and

fading channel. Also the best 1-D signal constellations in terms of SER/BER in a

fading channel are unknown. In the next chapter we would look at the problem for

optimizing both 1-D and 2-D constellations in both AWGN and fading channel at

SNR→∞.



Chapter 3

Optimizing Signal Constellations

at Asymptotically high SNRs

In this chapter we deal with optimization problem described in the previous chapter

but at asymptotically high SNR values. Necessary conditions for optimality are

proposed and conditions proposed by Foschini et.al are shown to be inaccurate.

In the first section we show the formulation of the problem at asymptotes for

1-D and 2-D constellations in both AWGN and fading channel. In the next sec-

tion we propose necessary conditions for optimality of 2-D constellations in AWGN

channel followed by the section where we show the counterexample to Foschini’s

conditions. In the section to follow we show optimization results for both 1-D and

2-D constellations. We conclude the chapter in the last section.

3.1 Problem Formulation at Asymptotes

We state two necessary conditions in the below given lemmas which every optimal

constellation is bound to satisfy irrespective of SNR,

Lemma 3.1. s∗ = {s∗1, s∗2, s∗3, ...s∗N} is a solution to the general optimization problem

in 2.5 only if the centroid sc = 1
N

∑N
i=1 s

∗
i = 0.

Proof. Firstly we state that as the minimum value of the error rate Pe(s1, ..sN , c(1), ..c(N))

10
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decreases with c, here c is the total power constraint. This can be seen from [12],

where SER is shown to decrease with SNR for any arbitrary constellation and on

the same lines same can be said for BER. Suppose {s∗1, s∗2, ...s∗N} is a minimum and

sc = 1
N

∑N
i=1 s

∗
i is the centroid and T (s1, ..sN) is the function characterizing total

energy in a constellation.

T (s∗1, s
∗
2, ..s

∗
N) =

N∑
i=1

‖s∗i ‖2
2 =

N∑
i=1

‖s∗i − sc + sc‖2
2

=
N∑
i=1

‖s∗i − sc‖2
2 +N‖sc‖2

2 + 2
N∑
i=1

(s∗i − sc)T sc (3.1)

In the above the cross term becomes 0 since sc is the centroid. Assume sc 6= 0, this

would mean that the total power in the equation (3.1) can be reduced by translating

such that the relative arrangement of the points is same and s′c = 0, here s′c is the

centroid of the translated constellation. Since the relative arrangement of points is

same the symbol error rate is same [12]. This means same SER is obtained at a

lesser power c value. This combined with the fact that optimal SER decreases with

c leads that {s∗1, ..s∗N} cannot be optimal. Therefore for the solution to be optimal

sc has to be 0. �

Lemma 3.2. If a constellation {s∗1, s∗2, ..s∗N} is optimal solution to 2.5 then the

derivative of Pe(s1, s2, ..sN , c(1), ..c(N)) is zero on the surface
∑N

i=1 ‖si‖2 = c at

{s∗1, s∗2..s∗N} and is proportional to (s∗1, ...s
∗
N).

Proof. The proof of the above follows straightaway from KKT conditions.

L(s1, ..sN) = Pe(s1, ..sN , c(1), ..c(N)) + λ(T (s1, ..sN)− c)

∇L(s∗1, ..s
∗
N) = ∇Pe(s∗1, ..s∗N , c(1), ..c(N)) + λ∇T (s∗1, ..s

∗
N) = 0

∇Pe(s∗1, ..s∗N , c(1), ..c(N)) = −2λ[s∗1, ..s
∗
N ]

�

Having described the general optimization problem and the necessary conditions
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for optimality we now focus on coming up with the optimal geometries at asymp-

totically high SNR values. We now give a lemma which gives a general relation

between symbol and bit error rate, expression given below from 2.2 and 2.4,

Pse(s1, ..sN) =
1

N

N∑
k=1

Pse(s1, ..sN |sk)

Pbe(s1, ..sN , c(1), ..c(N)) =
1

Ndlog2Ne

N∑
i=1

N∑
j=1

d(c(j), c(i))Pse(sj|si)

Here Pse is the symbol error rate Pse(..|sj), is symbol error rate given sj is sent,

Pse(sj|si) is the probability that sj is detected given si is sent.

Lemma 3.3. The bounds on Bit error rate function Pbe(s1, s2, ..sN , c(1), ..c(N)) in

terms of symbol error rate Pse

1
dlog2Ne

Pse(s1, ..sN) < Pbe(s1, s2, ..sN , c(1), ..c(N)) < Pse(s1, ..sN)

Proof. Pse(s1, s2, ..sN) = 1
N

∑N
i=1

∑N
j 6=i Pse(sj|si) and d(c(i), c(j)) ≤ dlog2Ne. From

this we have

Pbe(s1, s2, ..sN , c(1), ..c(N)) =
1

Ndlog2Ne

N∑
i=1

N∑
j=1

d(c(j), c(i))Pse(sj|si)

≤ 1

Ndlog2Ne

N∑
i=1

N∑
j=1,j 6=i

dlog2NePse(sj|si) ≤ Pse(s1, s2...sN)

So the upper bound in the lemma is established. Next we see that since d(c(i), c(j)) ≥

1, since i 6= j which would imply that,

1

Ndlog2Ne

N∑
i=1

N∑
j=1

d(c(i), c(j))Pse(sj|si) ≥
1

Ndlog2Ne

N∑
i=1

N∑
j=1,j 6=i

Pse(sj|si)

=
1

dlog2Ne
Pse(s1, ..sN)

So this completes the proof. �
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3.1.1 Problem Formulation For 1-D Constellation

Let S = {s1, s2, ..sN} be the 1-D constellation with each point in <. Let Pse(s1, s2, ..sN)

be the symbol error rate and {s[1], s[2]....s[N ]} is sorted in the increasing order of

value. For the case when the channel has no fading and there is only additive white

gaussian noise of variance σ we have

Pse(s1, s2, ..sN) =
2

N

N−1∑
i=1

Q(
s[i+1] − s[i]

2σ
) (3.2)

Here Q is the standard Q function, Q(x) = 1√
2π

∫∞
x
e−

t2

2 dt On the same lines as in

2.2 we get the expression in flat fading channel whose gain |h|2 = g is distributed as

fG(g)

Pse(s1, ..sN) =
2

N

N−1∑
i=1

∫ ∞
0

Q(

√
g(s[i+1] − s[i])

2σ
)fG(g)dg

Pse at asymptotes σ2 → 0, we can approximate Q(x) ≈ 1
2
e−

x2

2

Pse(s1, ..sN) ≈ 1

N

N−1∑
i=1

∫ ∞
0

e−
g(s[i+1]−s[i])

2

8σ2 fG(g)dg =
1

N

N−1∑
i=1

Mf (−
(s[i+1] − s[i])

2

8σ2
)

Here Mf is the moment generating function of f and the symbol error rate at

asymptotes is sum of MGF of distance between adjacent points squared. The above

approximation can be further tightened using the expression from the work of Chiani

et.al. [18]

Q(x) =
1

12
e−

x2

2 +
1

4
e−

x2

3

to get

Pse(s1, ..sN) ≈ 1

N

N−1∑
i=1

(
1

6
Mf (−

(s[i+1] − s[i])
2

8σ2
) +

1

2
Mf (−

(s[i+1] − s[i])
2

12σ2
)) (3.3)
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3.1.2 Problem Formulation For 2-D Constellation

Let S = {s1, s2, ..sN} be the 2-D constellation with each point in <2. Let Pse(s1, s2, ..sN)

be the symbol error rate and {D1, ..DN} be the N decision regions obtained from

the Voronoi diagram of the N points. For the case of AWGN channel the expression

goes as follows,

Pse(s1, ..sN |si) =

∫
(x,y)∈Dci

1

2π
e−‖(x,y)−si‖22)dxdy

Pse(s1, s2, ..sN) =
1

N

N∑
i=1

∫
(x,y)∈Dci

1

2π
e−‖(x,y)−si‖22)dxdy

Again on the same lines as 2.2 we get the expression in flat fading channel as

Pse(s1, s2, ..sN) =
1

N

N∑
i=1

∫ ∞
0

∫
(x,y)∈Dci

1

2π
e−‖(x,y)−√gsi‖22)fG(g)dxdydg (3.4)

At asymptotes σ2 → 0, we can say that Pse(s1, ..sN |sk) and Dk are determined

by minj 6=k ‖sj − sk‖ and can be approximated as

Pse(s1, s2, ..sN |sk) ≈
∫ ∞

0

exp

(
− gminj 6=k ‖sk − sj‖2

8σ2

)
fG(g)dg = Mf (−

minj 6=k ‖sk − sj‖2

8σ2
)

Here Mf is moment generating function corresponding to distribution f . So the

objective function is simply Pse(s1, ..sN) =
∑N

k=1 Mf (−minj 6=k ‖sk−sj‖2
8σ2 ) For the case

of AWGN channel the distribution f is δ(g − 1) and the Mf (t) = et, So the error

expression is is

Pse(s1, s2, ..sN) ' 1

N

N∑
k=1

exp

(
−min

j 6=k

‖sk − sj‖2

8σ2

)
Pse(s1, s2, ..sN) '
1

N
exp

(
−min

j 6=k∗
‖sk∗ − sj‖2

8σ2

)
(1 +

∑
k 6=k∗

exp

(
min
j 6=k∗
‖sk∗ − sj‖2

8σ2
−min

j 6=k

‖sk − sj‖2

8σ2

)
)
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In the above, k∗ is the index of that symbol whose nearest neighbor’s distance

is lesser than or equal compared to any other symbol. So at asymptotes we can

say that Pse would scale exponentially as the term outside the bracket as the terms

inside would go to zero. This leads to

Pse(s1, s2, ..sN) ∼ exp

(
−min

j 6=k∗
‖sj − sk∗‖2

8σ2

)
(3.5)

From Lemma 3.3 we can say that the bit error rate at asymptotes is

1

dlog2Ne
exp

(
−min

j 6=k∗
|sj − sk∗|2

8σ2

)
< Pbe(s1, ..sN , c(1), ..c(N)) < exp

(
−min

j 6=k∗
|sj − sk∗|2

8σ2

)

Since the bit error rate function is sandwiched from both sides by symbol error

rate, so the rate at which it goes to 0 is decided by pairwise minimum distance

among all possible pairs and would not depend on the labeling scheme c. So the

equivalent optimization problem is ,

Max min
j 6=k
‖sj − sk‖ (3.6)

subject to
N∑
i=1

‖si‖2 = c

Now we look at the case of bit error rate in fading channels. From Lemma 3.3 we

can write

1

dlog2Ne

N∑
k=1

Mf (−min
i 6=k

‖si − sk‖2

8σ2
) < Pbe(s1, ..sN , c(1), ..c(N)) <

N∑
k=1

Mf (−min
i 6=k

‖si − sk‖2

8σ2
)

(3.7)

Result 3.1. lima→∞Mf (−a) = 0

Mf (a) =
∫∞

0
e−axf(x)dx =

∫ ε
0
e−axf(x)dx +

∫∞
ε
e−axf(x)dx. For any ε > 0 the

second term
∫∞
ε
e−axf(x)dx < e−aε

∫∞
ε
f(x)dx < e−aε and the first term

∫ ε
0
e−axf(x)dx <∫ ε

0
f(x)dx < supx∈[0,ε](f(x))ε. Assuming f(x) to be bounded we can say that both

the terms approach 0. This completes the result.
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Using the above result and (3.7) we get that optimizing bit error rate at asymp-

totic SNR is equivalent to

min
N∑
k=1

Mf (−
mini 6=k ‖si − sk‖2

8σ2
) (3.8)

subject to
N∑
k=1

‖sk‖2 = c

In the next section we analyze the problem in 3.6 and come up with necessary

conditions for optimality.

3.2 Necessary Conditions for Optimality of 2-D

Constellation in AWGN Channel

Here we come up with necessary conditions which imply symmetry in the optimal

constellation. We start with stating the following result which would be used later.

Result 3.2. Maximum of the minimum distance from the neighbors which is a

solution to (3.6), is a strictly increasing function of c.

The proof to the above result is obvious, as c is increased one can proportionally

increase the power in each symbol leading to increased separation between each of

them.

Now we come up with necessary conditions for optimality.

Theorem 3.1. If S∗ = {s∗1, s∗2, ...s∗N} is a solution to the above problem in (3.6),

then each symbol s∗i would have a nearest neighbor which would attain the optimal

maximum distance.

Proof. Let S∗ = {s∗1, s∗2, ...s∗N} be a solution to (3.6) and max mink 6=j ‖sk−sj‖ = α(c)

is the optimal maximal distance which increases with c.

Suppose we assume that there exists an s∗i for which minj 6=i ‖s∗j − s∗i ‖ > α(c). As

a result we can reduce magnitude of s∗i by a factor of m < 1 to the point satisfying
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minj 6=i ‖s∗j − msi‖ ≥ α(c). This would reduce ‖si‖ and this in the magnitude of

si would lead to a decrement in total power c − δc, this would mean that α(c −

δc) = α(c). This leads to a contradiction as we know that α is a strictly increasing

function. �

Theorem 3.2. If S∗ = {s∗1, s∗2, ..s∗N} is a solution to (3.6), then each point s∗i will

have at least two nearest neighbors which attain the same optimal maximum distance

and the two neighbors lie on the opposite side of line joining origin to s∗i

Proof. Let s∗i = (r∗i , θ
∗
i ) and s∗j be the neighbor located at the least distance α(c)

from it. Also let us assume that s∗j = (r∗j , θ
∗
j ) be the only neighbor which is nearest to

it. The set of remaining points consist of points apart from j is Si−j = {s∗i }c∩{s∗j}c

and minsk∈Si−j ‖s∗i−s∗k‖ = β(c). We can assume θ∗i−θ∗j > 0 without loss of generality.

We can write α(c) as α(c, θi), a function θi

α(c, θi)
2 = r∗2i + r∗2j − 2r∗i r

∗
j cos(θi − θ∗j )

dα(c, θ∗i )
2

dθi
= 2r∗i r

∗
j sin(θ∗i − θ∗j ) > 0

Since β(c, θ∗i ) > α(c, θ∗i ) and change δθ∗i > 0 is such the minimum distance ‖si− s∗j‖

increases and β(c, θi) should not decrease below α(c, θ∗i ). Upon this rotation si would

have no nearest neighbor at the optimal distance implying that ‖si‖ can be reduced

like in theorem 3.1. This would imply that the optimal minimum distance can be

increased. This is a contradiction and so the assumption that the point will have

only one minimum distance neighbor cannot be true. So, the point needs to have at

least two nearest neighbors and if both are on the same side of the line from origin

to s∗i then again a rotation would lead to contradiction. �

These necessary conditions go on to show that optimal constellations are sym-

metric at asymptotically high SNR values. This fact is not coherent with the work

of foschini and the next section deals with this claim.



18

3.3 Counterexample to Foschini’s Conditions

3.3.1 Error in Foschini’s Work

Equation 21 in [4] gives the expression for the gradient gk =
∑

i 6=j e
−
‖si−sj‖

2

8No ( 1
‖si−sj‖2 +

1
4No

)1sk−si

It is given that as No → 0 then gk = α
∑

i∈N(k) 1si−sk = sk and let {s1, ..sN} be a

local minimum of the expression in (8) in [4]. The above necessary condition is not

correct because the nearest neighbors of sk are not at the same distance from it and

as No → 0 the term in the exponential of the derivative is not the same for every

nearest neighbor which is assumed in the necessary condition approximation. The

correct way to look at the problem is at asymptotes when No → 0, it is important

to see that any arrangement would give SER → 0 but the rate at which these

constellations is the deciding factor. The rate is decided by mini 6=j ‖si− sj‖ and the

constellation with highest rate is said to be asymptotically optimal. Basically at the

asymptotes the objective function is mini 6=j ‖si−sj‖ and this being non differentiable

makes the approach of taking gradient infeasible, so we take a different approach

described below.

Now we would come up with the asymptotically optimal 5 point constellation

and then show that it does not satisfy the necessary conditions given by foschini

et.al. Any possible arrangement of 5 points falls into one of the following category

1. All collinear 2. Triangle with 2 points inside 3. Convex quadrilateral with one

point inside 4. Convex pentagon

First we would see that using theorem 3.1 and 3.2 we would come up with

symmetrical families which satisfy the necessary conditions and from these we arrive

at the optimum solution.

Theorem 3.3. For a 5 point constellation, no irregular convex pentagonal constella-

tion qualifies as a candidate for optimal constellation and for a convex quadrilateral

with one point inside only the family of two equilateral triangles with a common

vertex satisfy the necessary conditions in previous section.
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Proof. Convex Pentagon

Let us consider any 5 point convex polygonal constellation and the points {s1, s2, ..s5}

in the cyclic order form the convex polygon which means s1 has edge to s2 and s5.

From theorem 3.1 and 3.2 we know each point would attain at least same mini-

mum among the nearest points.

This leads us to say that each point si can have both optimal distances 1)attained

by adjacent neighbors, 2) one by adjacent one by next to adjacent, 3)both by next

to adjacent.

Let us do an exhaustive case by case analysis.

1. Firstly if every point has the nearest neighbors as the adjacent points then we

obviously have a regular convex polygon.

2. If at least one point has nearest neighbors as next to adjacent points then we

see what happens. Let s1 has one nearest neighbor in the form of s3 and other

as s4. So d13 = d14 = dmin as shown in figure 3.5 and lets go on to s4, one

of its nearest neighbor is s1 and other nearest neighbor can’t be s2 because

d34 ≥ dmin. Lets assume d42 = dmin then ∠s4s1s3 >
π
3

using cosine rule in

triangle s4s1s3. ∠s4s1s2 <
π
3

using cosine rule in triangle in s4s1s2. This is

not possible as it leads to contradiction.

(a) If d34 = dmin then it is clear that s1s3s4 form an equilateral triangle.

From theorem 1.2, Points s2 and s5 their will have nearest neighbors as

s1, s3 and s1, s4 respectively . So we have all the points located on a

regular convex polygon.

(b) If d34 > dmin, the other nearest neighbor of s4 has to be s5 as it cannot be

s2 which has to be on the other side of s1s3 . The other nearest neighbor

of s5 apart from s4 has to be s1. So, s1s4s5, s1s2s3 form equilateral

triangles making the whole all the adjacent distances in the constellation

to be same except for d34. If d34 > dmin the constellation would not be
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Figure 3.1: Two Equilateral Triangles with one vertex common

convex ( prove using two angles from equilateral triangle π
3

and other > π
3

total angle > π, therefore d34 = dmin.

3. Now we have to look at the case when s1 has one nearest neighbor as s4 and

the other as s2. In this case, if s2 has s4 as the nearest neighbor then it

would be the same as the case of at least one point having two non adjacent

nearest neighbors. Therefore d24 > dmin and also s3 cannot have s5 as nearest

neighbor. If s3 has s2 and s4 as nearest neighbors and s5 can only have s1

and s4 as nearest neighbors giving a regular pentagonal structure. If s3 has s2

and s1 as nearest neighbors this combined with s4 having s5 and s1 as nearest

neighbors give us regular pentagonal structure.

Convex Quadrilateral with one point inside

Now we move to the case of convex quadrilateral with one point inside. Let {s1, ..s4}

form the convex quadrilateral and s5 is a point inside. So at least one point has

s5 as nearest neighbor let that point be s1 and s1’s other nearest neighbor can be

adjacent or next to adjacent point. If we choose the next to adjacent point which

means s3 then s2 will have s1 as the nearest neighbor which means this case is

already considered if we assume only the adjacent point case. So let s1 have s2 as

the other nearest neighbor. Now s2 can have s5 as nearest neighbor forming an

equilateral triangle which means the other two points s4 and s3, if one of them s5

as nearest neighbor then we will have another equilateral triangle in the form of

s4s3s5. Two equilateral triangles with s5 common and centroid at origin as in figure
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Figure 3.2: Regular Pentagon, parameters θ and φ

3.1, is the family of constellations which satisfy necessary conditions. It can happen

s3 and s4 have nearest neighbors as the adjacent points s1 and s2 as neighbors and

d34 = dmin such a case is not possible as ( contradiction sum of angles). If s2 had

s3 as the other nearest neighbor with d25 > dmin and s3 has option of s4 and s5 in

both these cases a rhombus would be formed which would not satisfy the condition

that s5’s distance to the vertices is more than edge length.

Based on similar lines, we can show that the cases for triangle with two point

and collinear one do not qualify as optimal candidates. �

Basically in this lemma we have applied necessary conditions derived in theorem

3.1 and 3.2 to come up with the a family of convex pentagons and two equilateral

triangles with a common vertex and centroid at origin which are possibly solution

of (3.6). Now we have to find the optimal member among the family of regular

pentagons.

In figure 3.2 we see a regular pentagon with side d and the family is parameterized

by θ and φ with centroid at O. First let us try and find the minimum for the case
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Figure 3.3: Regular Pentagonal, φ = φ∗

when θ is fixed and φ is varied keeping the total power fixed and the centroid at the

origin. In general d which is the minimum distance is a function of θ, φ and c. But

when only φ is varied , it is d(φ). When φ = φ∗ given below, the constellation is

given in figure 3.3

φ∗ =
3

2
π − θ

2
− cos−1 (1− 2 sin(

θ

2
)) (3.9)

From the symmetry of the situation we can see that d(φ∗ + γ) = d(φ∗ − γ) which

means the derivative is zero at φ∗ for a fixed θ and the function d is decreasing on

both sides of φ∗ and this claim can be shown by plotting d as a function of φ for a

fixed θ.

So now the problem reduces to comparing these minima for different values of

φ∗.

For simplicity of analysis we would use the rotated version shown in figure 3.4

parameterized by α

So what we need is the expression for d(α) 0 ≤ α ≤ π
3
.

d(α) =

√√√√ c

1
2

+ 2 cos2(α) + 4
5

sin2 α + 6
5
(1− (cos(α)− 1

2
)2) + 4

5
sin(α)

√
(1− (cos(α)− 1

2
)2)
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Figure 3.4: Regular Pentagonal with parameter α

Figure 3.5: Optimal Constellation

From the plot and derivative of this function one can say that it takes a minimum

value at α = 0. So from this we have the optimum constellation as shown above in

figure 3.5.

Among the family of equilateral triangles sharing a common vertex we can say

that the optimal constellation shown above will have least energy for a fixed distance.

If s1 is origin then each of these have same energy but we need to have centroid at

the origin, so the arrangement needs to be translated to have centroid as the origin.

So the arrangement which needs to be translated the maximum distance would have

least energy, implying the optimal constellation shown above will have least energy.

The above optimal constellation is a counterexample to Foschini’s conditions

because if we add the unit vectors in the direction of nearest neighbors of s4, we do

not get the resultant in the direction of s4. u34 + u45 + u41 points in u41.
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3.4 Optimization Results

For the case of 1-D constellation,

Result 3.3. Uniform N point PAM is globally optimal at asymptotic SNR values

in terms of SER and BER in AWGN channel, best possible labeling scheme being

binary reflected gray code.

Proof. First we would show that no constellation in which the distance between the

adjacent points is not equal is not a possible solution to the above problem.

Let us assume that s̄ = {s1, s2, ..sN} be a solution to the above maximization

problem in which at least one point is not located at the same distance from its

adjacent points. Let si be that point and let di,i+1 < di,i−1 . If this is the case then

this would mean that magnitude of si can be reduced at least till the point where

the two neighbors are at the same distance from i. This would mean that the same

maximum distance can be achieved at a lower power implying that the s̄ is not a

minimum from Result 3.2.

So this establishes the fact that only an arrangement of points in which inter

symbol distance between nearest adjacent neighbors is same can be optimal. This

condition of equal distance combined with the fact that centroid of the set of points

is at origin ( in Lemma 3.1) gives uniform PAM as the unique optimal solution.

Since we know that uniform N-PAM is the optimal constellation but we have

not commented on labeling for BER. In order to have a labeling which helps BER

achieve the lower bound given in lemma 3.3, binary reflected gray coding scheme is

the best amongst all possible schemes [17]. �

1-D constellation in Rayleigh Fading channels, the objective at asymptotes is

proportional to
∑N−1

i=1
1

(s[i+1]−s[i])2
. Interestingly optimizing this objective under the

power constraint gives us non uniform constellations as the optimal solutions. For 8

point constellation the optimal solution in terms of SER when total power is fixed to

unity is {−0.556,−0.371,−0.216,−0.071, 0.071, 0.216, 0.371, 0.556}. For the case of
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Figure 3.6: Lattice of Equilateral Triangles, Optimal constellations at asymptotes
in both AWGN and Rayleigh fading channels

BER, as seen in the previous sections, the same constellation with binary reflected

gray coding would be optimal.

For the 2-D constellation in AWGN and Rayleigh fading channel, the optimal

constellations in terms of SER/BER form a lattice of equilateral triangles as shown

in the figure 3.6.

3.5 Conclusion

In this chapter we have analyzed the BER/SER optimization at asymptotes for 1-

D/2-D constellations in both AWGN and fading channel. At asymptotes it is shown

that the optimization in terms of bit error rate is equivalent to symbol error rate for
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both AWGN and fading channels. 2-D optimal constellations in both AWGN and

rayleigh fading channel are shown to form a lattice of equilateral triangles. Necessary

conditions arrived at by Foschini are shown to be inaccurate and alternate necessary

conditions are given. In the following chapters our aim is to solve the same problem

at finite SNR values.



Chapter 4

Optimizing 1-D Constellations in

terms of Error Rate at Finite SNR

In this chapter our aim is to come up with best 1 dimensional constellations in terms

of both SER/BER in both AWGN and fading channels. We also come up with

necessary conditions for optimality in terms of symbol error rate in both AWGN

and fading channels.

In the first section we deal with convex formulation of optimization problem

in terms of symbol error rate in both AWGN and fading channel. Next we go on

to come up with necessary conditions for optimality for the same. In the following

section we analyze the bit error rate optimization problem . Moving on in the second

last section we come up with optimal constellations and show the improvements

in comparison to uniform PAM and we follow this section with conclusion to the

chapter.

4.1 Optimization in terms of Symbol Error Rate

The closed form symbol error rate expression for any possible arrangement can be

written unlike the 2 dimensional case. Let Pse(s1, s2, ..sN) be the symbol error rate

and {s[1], s[2]....s[N ]} is sorted in the increasing order of value. For the case when the

channel has no fading and there is only additive white gaussian noise of variance σ

27
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Figure 4.1: Uniform N PAM

we have from equation 3.2

Pse(s1, s2, ..sN) =
2

N

N−1∑
i=1

Q(
s[i+1] − s[i]

2σ
) (4.1)

Here Q is the standard Q function. Our aim is to minimize the above given a

fixed power as in (3.6).

The optimal solution to the above problem has been characterized in the litera-

ture by Makowski et.al [5]. Makowski et.al establish that optimal solution need to

be symmetric about the origin and the inter symbol distance increase as we move

away from the origin. Our aim here is to actually derive the optimal solution and

characterize based on signal to noise ratio. We then deal with the problem in a

general fading channel case. Having done a complete analysis of optimal solution

for symbol error rate in fading channels we would go the analysis of bit error rate.

Let us consider when the channel is fading with additive noise component. Signal

Received y = hsi + n where n is additive white gaussian noise with variance σ2 and

h is the complex fading coefficient. |h| is a random variable whose distribution is

f|h|(α) and the average symbol error probability is given as follows from equation

3.3,

P f
e (s1, s2, ...sN) =

2

N

N∑
i=1

∫ ∞
0

Q(
α(si+1 − si)

2σ
)f|h|(α)dα
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We can reformulate the optimization problem as a convex optimization problem,

but before that let us show that g(d) =
∫∞

0
Q(αd)f|h|(α)dα ; d > 0 is a convex

function on d > 0

g′′(d) =

∫ ∞
0

Q′′(αd)f|h|(α)dα =

∫ ∞
0

α3d√
2π
e−

(αd)2

2 f|h|(α)dα

Since g′′(d) > 0 ; d > 0 which would mean that the g is convex on d > 0. This helps

us formulate the minimization problem as follows

P
′f
e (d1, d2, ..dN) =

2

N

N∑
i=1

∫ ∞
0

Q(
αdi
2σ

)f|h|(α)dαI(di) =
2

N

N∑
i=1

g(di)I(di)

minP
′f
e (d1, d2, ..dN) (4.2)

subject to
N∑
i=1

(s1 +
i−1∑
k=1

dk)
2 ≤ c (4.3)

Now we have the above problem formulated as a convex problem which implies

that any local minimum should be a global minimum as well. Based on similar

lines as previous section on AWGN we come up with some necessary conditions for

optimality.

4.1.1 Necessary Conditions For Optimality

Lemma 4.1. For a constellation to be optimal, it has to be symmetric which means

for every symbol si > 0 there is a point sj < 0 such that |sj| = |si|

Proof. Let us assume that s̄ = {s1, s2, ...sN} is optimal and such that {s1 < s2, ... <

sN} and {sj − si = dj,i ; j > i}. From the expression of symbol error rate we can

also justify that s̄
′
= {−sN ,−sN−1....− s1} should give the same error which means

that this also is optimal.

Let us construct another constellation s̄∗ = s̄+s̄
′

2
and |s̄∗| ≤ |s̄|+|s̄∗|

2
= |s̄|. The
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power in s̄∗ is less than s̄.

P f
e (s1, ..sN) =

2

N

N∑
i=1

g(di+1,i) (4.4)

Whereas from Jensen’s inequality

P f
e (s∗1, ...s

∗
N) =

2

N

N∑
i=1

g(
di+1,i + dN+1−i,N−i

2
)

≤ 2

N

N∑
i=1

1

2
g(di+1,i) +

1

2
g(dN+1−i,N−i) = P f

e (s1, s2, ...sN)

Equality being satisfied only when di+1,i = dN+1−i,N−i which is the case if s̄ is

symmetric otherwise the constellation is not optimal. �

Lemma 4.2. For a constellation to be optimal, as we move away from origin the

inter symbol distance increases as we move away from origin, which means di,i−1 <

di,i+1 when si−1 > 0 and di,i+1 < di,i−1 for si+1 < 0

Proof. Assume that we have an optimal arrangement {s1, s2, ..sN} in which si−1 > 0

and di,i−1 > di,i+1. So suppose we change si to s′i = si + δsi and to keep the total

power constant we change sN to s′N = sN + δsN such that siδsi + sNδsN = 0.

δPe(s1, s2, ..sN)

δsi
= (g′(di,i−1)− g′(di,i+1))− si

sN
g′(dN,N−1)

=

∫ ∞
0

(
Q′(αdi,i−1)−Q′(αdi,i+1)− si

sN
Q′(αdN,N−1)

)
f|h|(α)dα > 0

The above holds because di,i+1 < di,i−1 and

(
Q′(αdi,i−1)−Q′(αdi,i+1)− si

sN
Q′(αdN,N−1)

)
=

1

2
(e−

α2d2i,i+1
2 +

si
sN
e−

α2d2N,N−1
2 − e−

α2d2i,i−1
2 ) > 0

So we see that the derivative is positive with respect to change keeping the constraint

satisfied which implies that the constellation can’t be optimal. �

Theorem 4.1. For a constellation to be optimal, the increase in the inter symbol
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distance as we move away from origin cannot be more than a certain limit. If

p(γ) = f|h|(
√
γ) and P (s) = L(p(γ)) s > 0 where L is the Laplace transform if

si > 0 then di,i−1 < di,i+1 <

√
P−1

(
i+1
2i+1

P (
d2i,i−1

4σ2 )
)

and if si < 0 then di,i+1 < di,i−1 <√
P−1

(
i+1
2i+1

P (
d2i,i+1

4σ2 )
)

Proof. Here also the idea is somewhat similar, first let us take {s1, s2, ..sN} to be

optimal. Let si > 0 , and here we change si and si+1 only keeping the total power

fixed, which would mean siδsi + si+1δsi+1 = 0

δPe(s1, s2, ..sN)

δsi
= g′(

di,i−1

2σ
)− (1 +

si
si+1

)g′(
di,i+1

2σ
) +

si
si+1

g′(
di+1,i+2

2σ
)

Since si < si+1 and if g′(
di,i−1

2σ
) < (1 + si

si+1
)g′(

di,i+1

2σ
) ≤ 2i+1

i+1
g′(

di,i+1

2σ
) would mean the

derivative above can never be zero implying that such an arrangement cannot be

optimal.

In the above we used 1 + si
si+1

< 2i+1
i+1

and it can be justified as follows. Since

we know di,i+1 is larger than preceding inter symbol distances for all sj ≥ 0 and

j < i. This combined with
∑i

k=j dk,k+1 = si, here j is the index of first non negative

symbol, gives di,i+1 >
si
i
. From this we can say that 1 + si

si+1
= 1 + si

si+di,i+1
< 2i+1

i+1

g′(
di,i−1

2σ
) = −

∫ ∞
0

e−
d2i,i−1α

2

4σ2
α

2σ
f|h|(α)dα

= −
∫ ∞

0

e−
d2i,i−1γ

4σ2

√
γ

2σ
f|h|(
√
γ)

1

2
√
γ
dγ

=
−1

2
√

2σ

∫ ∞
0

e−
d2i,i−1γ

4σ2 f|h|(
√
γ)dγ

=
−1

2
√

2σ

∫ ∞
0

e−
d2i,i−1γ

4σ2 p(γ)dγ = − −1

2
√

2σ
P (
d2
i,i−1

4σ2
)

Here P (s) =
∫∞

0
p(γ)e−sγdγ and P ′(s) = −

∫∞
0
γp(γ)e−sγdγ < 0 because p(γ) >

0 implying P is strictly decreasing in s > 0.
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g′(
di,i−1

2σ
) <

2i+ 1

i+ 1
g′(
di,i+1

2σ
)

−1

2
√

2σ
P (
d2
i,i−1

4σ2
) <

−1

2
√

2σ

2i+ 1

i+ 1
P (
d2
i,i+1

4σ2
)

d2
i,i+1

4σ2
> P−1(

i+ 1

2i+ 1
P (
d2
i,i−1

4σ2
))

So if the above is true the derivative can never be zero so the condition in the lemma

holds. �

Corollary 4.1. For a constellation to be optimal, the increase in the inter symbol

distance as we move away from origin cannot be more than a certain limit, if si > 0

then di,i−1 < di,i+1 <
√
d2
i,i−1 + 4σ2 ln(2i+1

i+1
) and if si < 0 then di,i+1 < di,i−1 <√

d2
i,i+1 + 4σ2 ln(2i+1

i+1
)

Proof. Here also the idea is somewhat similar, first let us take {s1, s2, ..sN} to be

optimal. Let si > 0 , and here we change si and si+1 only keeping the total power

fixed, which would mean siδsi + si+1δsi+1 = 0

δPe(s1, s2, ..sN)

δsi
= (4.5)

Q′(
di,i−1

2σ
)− (1 +

si
si+1

)Q′(
di,i+1

2σ
) +

si
si+1

Q′(
di+1,i+2

2σ
)

di,i+1 >
si
i

if Q′(
di,i−1

2σ
) < (1 + si

si+di,i+1
)Q′(

di,i+1

2σ
) would mean the derivative in (4.5)

can never be zero implying that such an arrangement cannot be optimal,

e−
d2i,i−1

4σ2 > (1 +
si

si + di,i+1

)e−
d2i,i+1

4σ2

e−
d2i,i−1

4σ2 > (1 +
1

1 +
di,i+1

si

)e−
d2i,i+1

4σ2

e−
d2i,i−1

4σ2 > (
2i+ 1

i+ 1
)e−

d2i,i+1

4σ2

−
d2
i,i−1

4σ2
> ln(

2i+ 1

i+ 1
)−

d2
i,i+1

4σ2
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Pbe(s1, s2, ..sN , c(1), ..c(N)) =
1

Ndlog2Ne

N∑
i=1

N∑
j=1

d(c(j), c(i))P (sj|si) (4.6)

So, for the constellation to be optimal we have to have di,i−1 < di,i+1 <
√
d2
i,i−1 + 4σ2 ln(2i+1

i+1
)

�

From this theorem we can also see that increment decreases with increasing SNR

(decreasing σ) and for σ → 0 we can see it approaches a uniform constellation.

4.2 Optimization in terms of Bit Error Rate

Here our aim is to minimize the BER for a PAM constellation given the power

constraint but here as we would see that the objective function will depend on the

coding scheme and it would be non convex unlike the SER case. But as we would

see that the optimization problem can be converted into a convex problem under

the condition that power constraint has to be more than a threshold. To develop

this result we use the following results stated below. Let c : [1, 2...N ] → {0, 1}m

be the coding function which maps the indices of the symbols to a string of length

m = dlog2Ne. Bit error rate function is given as (4.6)

Here P (sj|si) is the probability that symbol j is detected given si is sent and

d(c(i), c(j)) is the hamming distance between the two codewords.

Lemma 4.3. For any N point PAM,

1

dlog2Ne
2g(

√
2P

2Nσ
) ≤ Pbe(s1, ..sN) ≤ 2g(

√
P

2
∑N

2
i=1 i

2σ
) (4.7)

lower bound holds for all constellations and the upper bound is necessary for the

constellation to be optimal in terms of BER

Proof. Here we want a good upper bound for the constellation to be optimal in

terms of bit error rate and we know that closed form expression of uniform PAM

given as, Pse(s
u
1 , ..s

u
N) = 2g(

√
P∑N

2
i=1 i

2
) Pse(s1, ..sN) ≤ 2g(

√
P∑2N2

i=1 i
2σ

).
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From Lemma 3.3 Pbe(s1, ..sN , c(1), ..c(N)) ≤ 2g(
√
P∑2N2

i=1 i
2σ

)

Now we establish the lower bound,

Pse(s1, ..sN) =
2

N

N∑
i=1

g(
si+1 − si

2σ
) ;G = {s1 < s2.. < sN}

Here Pse is convex over set G and 2
N

∑N−1
i=1 g( si+1−si

2σ
) ≥ g(

∑N−1
i=1

si+1−si
2σ

) =

g( sN−s1
Nσ

)

Now we try to minimize

min g(
sN − s1

Nσ
)

or max(sN − s1)

subject to
N∑
i=1

|si|2 = P

and a solution to this is obvious when s∗1 = −s∗N =
√

P
2

and g(2 sN−s1
2Nσ

) ≥ g(
√

2P
N2σ

) �

Here our aim is to minimize Pbe(s1, ..sN , c(1)..c(N)) subject to the power con-

straint over all possible coding schemes. But since we know that gray coding is

possible in a PAM constellation and gray coding is known to be optimal for uniform

PAM.

Lemma 4.4. For any constellation to be optimal in terms of BER the separation

between any two adjacent symbols

di,i+1 > g−1(Ndlog2Neg(
√
P

2
∑N

2
i=1 i

2σ
))

Proof. We know from Lemma 3.3 that 1
dlog2Ne

Pse(s1, ..sN) < Pbe(s1, s2, ..sN , c(1), ..c(N)) <

Pse(s1, ..sN). This combined with Lemma 4.3 means that for a constellation to be

optimal 1
log2N

Pse(s1, ..sN) < 2g(
√
P

2
∑N

2
i=1 i

2σ
).
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So now we have

1

N

N∑
i=1

g(
si+1 − si

2σ
) < dlog2Neg(

√
P

2
∑N

2
i=1 i

2σ
)

1

N
g(
sk+1 − sk

2σ
) < dlog2Neg(

√
P

2
∑N

2
i=1 i

2σ
)

g(
di,i+1

2σ
) < (Ndlog2Neg(

√
P

2
∑N

2
i=1 i

2σ
)))

di,i+1 > g−1(Ndlog2Neg(

√
P

2
∑N

2
i=1 i

2σ
))

�

This bound can be further tightened by using the exact BER of hierarchical gray

coded PAM as the upper bound. So now we know that for any N PAM the distance

between adjacent symbols has to be more than the threshold given in the previous

theorem.

Corollary 4.2. For any constellation to be optimal in terms of BER in AWGN

channel the separation between any two adjacent symbols

di,i+1 > 2σQ−1(Ndlog2NeQ(
√
P

2
∑N

2
i=1 i

2σ
))

The above follows if we take the distribution as fG(g) = δ(g − 1)

Observation 4.1. For any N PAM gray coded constellation the hamming distance

d(c(i), c(i+ 1)) = 1 and d(c(i), c(i+ 2)) = 2

Since d(c(i), c(i+2)) ≤ d(c(i), c(i+1)+d(c(i+1), c(i+2)) = 2 and the fact that

d(c(i), c(i + 2) = 1 is not possible ( can be seen from construction) which means

d(c(i), c(i+ 2)) = 2.

Theorem 4.2. In BER optimization of gray coded PAM constellation in AWGN

channel global minimum is achieved beyond a average power threshold P ∗ within β

distance β << 1

BER expression for any gray coded N PAM is given in (4.8) and we make use of

this observation.
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Pbe(s1, ..sN , c(1), ..c(N)) =
1

Ndlog2Ne

N∑
i=1

N∑
j=1,j 6=i

d(c(j), c(i))
(∣∣g(

∣∣sj + sj−1

2σ
− si
σ

∣∣)I(j > 1)

−g(
∣∣sj+1 + sj

2σ
− si
σ

∣∣)I(j < N)
∣∣) =

1

Ndlog2Ne

N∑
i=1

(
g(
di,i+1

2σ
) + g(

di,i−1

2σ
) + g(

di,i+1 +
di+1,i+2

2

σ
)

+g(
di,i−1 +

di−1,i−2

2

σ
)
)
− 2g(

di,i+1 + di+1,i+2 +
di+2,i+3

2

σ
)− 2g(

di,i−1 + di−1,i−2 +
di−2,i−3

2

σ

))
+

1

N log2N

N∑
i=1

∑
j 6=i,i−1,i+1,i−2,i+2

d(c(j), c(i))
(∣∣g(

∣∣sj + sj−1

2σ

si
σ

∣∣)I(j > 1)

−g(
∣∣sj+1 + sj

2σ
− si
σ

∣∣)I(j < N)
∣∣) (4.8)

For AWGN channel we use fG(g) = δ(g − 1) and we see that in the sum of Q

functions the dominant terms are coming from nearest neighbors and we use this

fact in the following way.

Q(di,i+1 + di+1,i+2 +
di+2,i+3

2
)

Q(
di,i+1

2
)

≤ e−

(
di,i+1+di+1,i+2+

di+2,i+3
2

)2
2

e−
d2i,i+1

8

=

e
−3d2i,i+1

8
−
d2i+1,i+2

2
−
d2i+2,i+3

8
−didi+1−

di+1di+2
2

− di+2di+3
2

This ratio combined with threshold α(P )from lemma 4.4 gives that

Q(di,i+1 + di+1,i+2 +
di+2,i+3

2
)

Q(
di,i+1

2
)

< e−3α(P )2

So we see that there is an exponential decay which means that suppose β << 1

and e−3α(P )2 < β, for this to happen P has to be more than a certain value, calcu-

lated as α(P ∗) =
√
−1
3

ln(β) This means that the bit error rate can be accurately
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Pbe(d1,2, d2,3, d3,4) =
1

8

(
Q(
d1,2

2
) +Q(d1,2 +

d2,3

2
)−Q(d1,2 + d2,3 +

d3,4

2
)
)

+
1

8

(
Q(
d3,4

2
) +

Q(d3,4 +
d2,3

2
)−Q(d3,4 + d2,3 +

d1,2

2
)
)

+
1

8

(
Q(
d1,2

2
) +Q(

d2,3

2
) +Q(d2,3 +

d3,4

2
)
)

+
1

8

(
Q(
d3,4

2
) +Q(

d2,3

2
) +Q(d2,3 +

d1,2

2
)
)

approximated as,

Pbe(s1, ..sN , c(1), ..c(N))
′
=

1

Ndlog2Ne

N∑
i=1

(
Q(di,i+1)I(i < N − 1)

+Q(di,i−1)I(i > 1) +Q(di,i+1 +
di+1,i+2

2
)I(i < N − 2) +

Q(di,i−1 +
di−1,i−2

2
)I(i > 2)

)
Thus finally we have bit error rate as a sum of Q functions which makes it

convex. This implies that this optimization problem can also be seen as a convex

optimization problem which means the best possible constellation can be found.

In the case of gray coded 4-PAM exact BER is given by 4.9 The exact BER

function is not convex but if we use the fact that
Q(d1,2+d2,3+

d3,4
2

)
)

Q(
d1,2
2

)
< β when α(P ) >√

−1
3

ln(β) In the SER case the objective function was a bit simpler but here as well

we can use the same ideas to show that above a threshold of P the solution can be

characterized in the same manner. Basically for optimal BER also the inter symbol

distance increases as we move away from origin.

4.3 Optimization Results

Since we know that the problem is convex for SER in fading channel and for BER

above a certain SNR in AWGN channel, in each case global minimum is attained.

We see that optimal constellation changes with SNR.

In the plot below 4.2 we show the comparison between SER of 4 point uniform

constellation PAM with different optimal constellation obtained at various SNR

values. The improvement is not fixed (around 0.1 db between 1-4 db SNR) because
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Figure 4.2: SER of uniform 4 PAM vs Optimal PAM
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Figure 4.3: SER of uniform 8 PAM vs Optimal PAM

as SNR increases uniform comes closer to optimal as we have shown already.

Since the exact solution cannot be arrived at analytically what we do is from

the geometry obtained we fit a polynomial in terms of parameter of the uniform

constellation and obtain close to exact expressions as given in table on next page.

The improvement in SER and BER of binary reflected gray coded 8 PAM for

AWGN and flat fading is shown below in figure 4.3 and 4.4. Improvement in the case

of SER in AWGN channel is the maximum around 0.25db. We can also arrive at

a similar table which gives an accurate expression for symbol points in the optimal

constellation.

Gray coding of 8 PAM is given as {c(1), ..c(8)} is {000, 001, 011, 010, 110, , 111, 101, 100}

4.4 Conclusion

In this chapter we come up with optimization formulation for 1-D constellations in

both AWGN and fading channels. For SER minimization the problem is convex in

both AWGN and fading channel and for BER minimization the problem is shown
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Figure 4.4: BER of gray coded uniform 8 PAM vs Optimal PAM
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to be convex beyond a certain SNR threshold, in AWGN channel, implying global

minimum is achieved. In the next chapter we aim to solve the same problem in the

context of 2-D constellations.



Chapter 5

Optimizing 2-D Constellations in

terms of Error Rate at Finite SNR

In this chapter we deal with the optimization problem for the case of 2-Dimensional

constellations at any finite SNR. We formulate the problem in a numerical optimiza-

tion framework and using standard optimization procedures we show the optimum

constellations for the case of 8 and 16 point constellations in AWGN channnel.

In the first section we show numerical evaluation of SER/BER in both AWGN

and fading channel can be useful in getting the optimal solution up to a tolerance

level. Upon formulating the numerical optimization problem in the next section we

use interior point methods to come up with optimal solutions for 8 and 16 point

constellations. In the last section we conclude the chapter and lay the theme for

next chapter.

5.1 Numerical Optimization to Minimize SER/BER

As we can see that the objective function which is symbol error rate is not convex

and there is no closed form to it for any general arrangement of points. At best the

SER/BER expressions can be written in terms of certain gaussian 1/2-dimensional

integrals. Since we need to come up with optimal geometries which give the least

SER/BER for any N point constellation at a fixed SNR, the best way to go about is

41
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numerical optimization. Consider a set G = {(s1, s2....sN)
∑N

i=1 |si|2 ≤ P} and let

σ2 = 1 in a general fading channel.

α(x, y) = arg min
i=1,..N

|(x, y)− si|2

Pse(s1, s2, ..sN) = 1− 1

N

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

1

2π
e−(mini=1,...N ‖(x,y)−√gsi‖22)fG(g)dxdydg

Pbe(s1, s2, ..sN , c(1), .c(N))

=
1

Ndlog2Ne

N∑
i=1

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

d(c(α(x, y), i)e−(‖(x,y)−√gsi‖22)fG(g)dxdydg

As already said above we would be considering the numerical evaluation of the

SER and BER expressions above. To do that we bring the notion of tolerance which

basically is the limit for the error in the numerical evaluation from the actual exact

value, in our case it is ε. For numerical evaluation we can say that for any fading

distribution there would be a value g∗ , P (G > g∗) < δ where δ is close to zero.

We consider a square grid of discrete points shown in the figure which goes from

−r
√
g∗P : r

√
g∗P where r > 1, gain is also discretized into K intervals. On this

discretized domain, we use trapezoidal integration over this region to come up with

expression P n
e within tolerance level of ε as follows

P n
se(s1, s2, ...sN) = 1− 1

N

1

2π

K∑
t=1

M∑
i=1

M∑
j=1

e−(mink=1,...N ‖(xi,yj)−
√
gtsk‖22)∆x∆y∆g

∆x = ∆y = 2
r
√
g∗P

M
∆g =

g∗

K

We want to choose ∆x , ∆g such that |Pse(s1, ..sN) − P n
se(s1, ..sN)| < ε and the

error in the above comes due to two factors, one due to not considering the integral

over the complete space and second due to trapezoidal approximation. We select the

domain such that we can reduce the error to below the tolerance value. Here we show

the analysis for the case of AWGN channel where the square grid is −r
√
P : r

√
P
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given in figure 5.1. The error due to the first factor can be seen as

e1(s1, ..sN) =

∫ ∞
−∞

∫ ∞
r
√
P

e−(mini=1,...N |(x,y)−si|22)dxdy +

∫ ∞
−∞

∫ −r√P
−∞

e−(mini=1,...N |(x,y)−si|22)dxdy +∫ r
√
P

−r
√
P

∫ −r√P
−∞

e−(mini=1,...N |(x,y)−si|22)dxdy +

∫ r
√
P

−r
√
P

∫ ∞
r
√
P

e−(mini=1,...N |(x,y)−si|22)dxdy

The above error expression can be bounded above using the following idea, basically

the minimum distance of a point from the boundary of the grid is (r−1)
√
P assuming

the symbol has maximum possible power P .

e1(s1, ..sN) <

∫ 2π

θ=0

∫ ∞
(r−1)

√
P

1

2π
re−r

2

dθdr = e−(r−1)2P

Error due to trapezoidal integration can be calculated using the following result

[19], |
∫ b
a
f(x)dx− (b−a)

M
(f(a)+f(b)

2
+
∑M

i=1 f(a+ i b−a
M

)| < (b−a)3

12M2

From here we can derive the 2-D formula and from that we would have the bound

on error of second type

e2(s1, ..sN) <
4P 2

M2

In fact the e2(s1, ..sN) would be bounded by 4P 2

M4 as P becomes large (proof of this

is not given here). So what we can see is that we can by appropriately choosing r

and ∆x come up with P n
se which is within ε tolerance level of the actual value.

Suppose Pse(s
∗
1, ..s

∗
N) be the minimum symbol error rate that is achieved by any

constellation in G and the optimization of P n
se would give an optimal solution within

the tolerance level. So we have

minP n
se(s1, ..sN)

subject to
N∑
i=1

|si|2 = c

In the above optimization problem we can see that the objective function is a
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non convex one and our aim is to attain the global minima. So to do that we need to

search all the local minimum values. Basically on the level set of constraint function

which would be a 2N dimensional sphere we need to find all such minimum values.

It could be that there are infinite such minima but interestingly there would be only

finitely many distinct local minimum values, now we would establish this claim.

First of all we can see that P n
se(s1, ..sN) can be written in the form of a superposi-

tion of integrals of smooth functions. From this we can see that for any small change

in ∆P n
se < δwe would have a corresponding norm ball s′i s.t |s′i − si|2 < ε. Also we

can see from simple ideas that the derivative of the Pse would also be continuous.

Now assume that there are infinitely many distinct local minimum values for the

optimization problem above. For any β > 0 we would be able to find local minima

separated by a distance lesser than β. These local minima have must same value

of function since having distinct values at arbitrary small separation is in straight

violation with continuity.

Observation 5.1. There are only finitely many distinct local minimum values of

the optimization problem given above.

To arrive at each of these local minimum values we use interior point methods

from different start points. Using a large number of random start points we arrive

at different local minimum values and with a high probability we can say that the

global minimum value is attained.

Observation 5.2. Optimal constellation obtained is SNR dependent, basically the

geometry or relative arrangement of points changes with SNR.

On the same lines as symbol error rate, we can show that bit error rate can be

evaluated numerically. For the case of SER in AWGN channel , the error term for

integral outside the square grid goes as e−(r−1)2P . The same bound can be used for

bit error rate from lemma 3.3 and the error due to trapezoidal integration goes as

O( 1
M2 ).
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Figure 5.1: Grid Structure for evaluating SER of any N point constellation

Optimal Constellation SNR < 9 dB Optimal Constellation  9dB < SNR < 12 dB

Figure 5.2: 8 point Optimal constellations obtained at different SNR values
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Figure 5.3: log(SER) vs SNR of optimal 8 point vs foschini’s constellation

5.2 Optimization Results for 8 and 16 point Con-

stellations

Interior point methods [20]are used for numerical optimization of 8 and 16 point

SER expressions at different SNR values. Using these procedures from multiple

random feasible start points helps us compare the local minima and arrive at global

minimum with a high probability. In order to do this efficiently and arrive at global

minima with a high probability global search procedures are used in matlab with

interior point method as the local solver. For the case of 8 points optimization

is done at different SNR values and the SER of the optimal constellation is shown

compared with asymptotically optimal Foschini’s constellation. Shape of the optimal

constellation in terms of SER changes, it is of type-1 as shown in figure 5.2 before

9db and it changes to 1-7 uniform constellation from 9-12 db. The improvement

obtained in comparison to Foschini’s constellation is plotted in figure 5.3.

Same global optimization from multi start points is performed for 16 point con-
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Figure 5.4: Pentagonal constellation optimal between SNR 11 to 17dB
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Figure 5.5: 1-6-9 uniform constellation optimal between 5-11 dB
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Figure 5.6: log(SER) vs SNR of optimal 16 point vs other constellations
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Figure 5.7: log(SER) vs SNR of optimal 16 point vs other constellations
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Figure 5.8: log(BER) vs SNR of optimal 8 point vs Foschini’s constellation

stellation as well for different SNRs and the results are given below. 1-6-9 Constel-

lation shown in figure 5.5 is optimal at lower SNRs (5-11 dB). But it is important

to note that the ring ratio of optimal 1-6-9 constellation depends on the SNR value.

The optimal ring ratio decreases from 2.85 at 5 dB to 2.09 at 10dB. A new type of

constellation, pentagonal, figure 5.4, is optimal constellation from SNR range 11-17

dB. Here also ring ratio of the optimal constellation changes with SNR from 2.40

at 11 dB to 2.1 at 15 dB. Performance of the optimal constellation and the other

constellations in terms of SER is shown in figure 5.6 and 5.7.

Now we see the BER optimization of 8 point constellation. Before we do this we

should keep one thing in mind optimal constellation in terms of BER would depend

on the coding scheme being used. In general gray coding is the best possible scheme

but most of the times gray coding is not possible. As we see that in the case of 8

PSK gray coding is possible but PSK is not an optimal arrangement because of of

the less nearest neighbor distance. Different labeling schemes were used and optimal

solution was obtained and it was found that minimum bit error rate is achieved for

the irregular constellation shown in 5.9 with labeling scheme same as 1-7 regular

constellation. The improvement from foschini’s constellation is shown in figure 5.8.
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Figure 5.9: 8 point optimal irregular constellation

Interestingly the optimal constellation obtained is not regular, the distance be-

tween the symbol at the center and other symbols is not the same, reason being that

it is not at the same hamming distance from all the points.

For the case of 16 point constellations in terms of bit error rate different labeling

schemes were used to obtain optimal solutions. Gray coded uniform square QAM

5.11 where d1 = d2 is the best known constellation in low SNR range. Using opti-

mization procedures, we were able to obtain gray coded non uniform QAM d2 > d1

as the optimal constellation, improvements are shown in figure 5.10

5.3 Conclusion

In this chapter we saw numerical formulation of the 2-D constellation optimization

in terms of both SER and BER in AWGN and fading channel. We came up with

optimal solutions in terms of both SER and BER in AWGN channel for 8 and 16

point case. Up till now we have been able to arrive at the optimal constellations for
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Figure 5.10: 16 point optimal non uniform QAM vs uniform QAM constellation
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Figure 5.11: 16 point optimal non uniform QAM constellation

both 1-D and 2-D constellations for a given power constraint, in the next chapter

we analyze an interesting application of the solutions obtained till now.



Chapter 6

Adaptive Transmit Power and

Constellation Allocation in Fading

Channel

In this chapter we show that if the constellation and the transmit power are assigned

based on channel gain keeping the average power constraint satisfied improvement

in error rate is possible. We formulate the same as an optimization problem and

show the semi analytic solution for optimal power allocation in terms of optimal

error rate as a function of power.

In the first section we formulate the case when the transmitter is allowed to vary

the transmit power and the constellation based on fading gain as an optimization

problem in terms of SER/BER. In the next section we show that for minimizing SER

of 1-D constellation the problem is convex followed by the section on optimization

results where we illustrate the improvement possible with the help of an example.

54
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6.1 Adaptation of Transmit Power with Channel

Gain

Up till now what we have done is given a fixed transmit power we find a 1-D/2-D

constellation which gives the minimum SER/BER for the given nature of channel.

Constellation obtained depends on the power, P , (s∗1(P ), s∗2(P ), ..s∗N(P )) and the

minimum SER is given as P ∗e (P ) = Pe(s
∗
1(P ), ..s∗N(P )). Here in this chapter we

illustrate our idea only on optimization in terms of symbol error rate.

In a fading channel when the transmitter knows the gain G = g, whose pdf is

given as fG(g) and based on this the transmitter should decide what constellation to

use for transmission so that the average SER is minimized. This can be formulated

as the following optimization problem

min

∫ ∞
0

Pe(s1(Pt(g)), ...sN(Pt(g)))fG(g)dg

subject to

∫ ∞
0

Pt(g)fG(g)dg = P̄T

N∑
i=1

|si(Pt(g))|2 = Pt(g)

We can simplify the above by breaking the problem into two parts, for a par-

ticular value of gain g, Pt(g) is the transmit power and for this particular transmit

power level we know the optimal constellation and P ∗e (Pt(g)). Here we would like

to comment that this optimal closed form expression is gettable for 1-D case but

for 2-D case the expression is complicated as it would depend on which shape of

constellation is being used in that particular SNR range. Now the optimization

problem can be restated as

min

∫ ∞
0

P ∗e (Pt(g))fG(g)dg

subject to

∫ ∞
0

Pt(g)fG(g)dg = P̄T
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The lagrangian for the above optimization problem is defined below,

L(Pt(g), λ) =

∫ ∞
0

P ∗e (Pt(g)g)fG(g)dg + λ(

∫ ∞
0

Pt(g)fG(g)dg − P̄T )

The optimal power allocation scheme has to satisfy

∂L(Pt(g), λ)

∂Pt(g)
= 0

gP ∗
′

e (Pt(g)g)fG(g) + λfG(g) = 0

Pt(g) =
P ∗
′−1

e (−λ
g

)

g∫ ∞
0

P ∗
′−1

e (−λ
g

)

g
fG(g)dg = P̄T

Here P ∗
′

e is the derivative of P ∗e , P ∗
′−1

e is the inverse of the derivative assuming

it exists.

6.2 Convex Formulation for Symbol Error Rate

of 1-D constellation

The above minimization problem can be shown to be convex for the case of sym-

bol error rate minimization of 1-D constellation. {s1(g), ..sN(g)} denote the set of

constellations which depend on the channel gain and they can also be denoted by

{s1(g), d1(g), .dN−1(g)} where di is the inter symbol distance. Here the idea used is

similar to 4.3 and is given as follows,

min

∫ ∞
0

2

N

N∑
i=1

Q(
√
gdi(g))fG(g)dg

subject to
N∑
k=1

|s1(g) +
k−1∑
i=1

di(g)|2fG(g)dg ≤ P̄T

di(g) ≥ 0 ∀i, g > 0
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By discretizing the channel gain one can gain insight into the fact that the above

problem is convex. Once we discretize, the integral in objective and constraint in

the above formulation is replaced by summation of convex functions.

6.3 Optimization Results

In the figure 6.1 we show the solution for optimal power allocation of 8 point 1-D

constellation vs channel gain. In this case we have the average transmit SNR , 11

dB and the optimal power and constellation are used depending upon the channel

gain. If we do not adapt the transmit power and use uniform PAM SER is 0.340

and if we do not adapt and use non uniform optimal PAM then SER is 0.330 and

by adapting it reduces to 0.316, the gains become larger as number of points in the

constellation become large (here only 8).

6.4 Conclusion

In this chapter we came up with solution to the optimization problem where the

transmitter is allowed to adapt the optimal constellation based on channel gain

keeping the size and dimensionality of constellation fixed. Convex formulation for

the case of SER minimization in 1-D showed global minimum can be achieved. Next

we go on to the chapter where we conclude our work and throw some light on future

work that is possible.
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Figure 6.1: Adaptive Power Waterfilling for 8 point 1-D case



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this work we have been able to close some open ends in the understanding of best

signal geometries. First of all for the case of 1-D constellations we have been able

to show the best signal constellations which achieve global minimum with respect

to symbol error rate in any given fading channel. Next obvious problem which is

optimization of bit error rate of 1-D constellations in both AWGN and fading channel

is analyzed and close to globally optimum solutions are arrived at. For the case of 2-

D constellations we establish that at asymptotes optimizing symbol and bit error rate

is equivalent in both AWGN and fading channels and the optimal constellations in

both these cases form a lattice of equilateral triangles. Also the necessary conditions

given by Fochini et.al for asymptotic optimality in AWGN channel are shown to be

inaccurate and we propose alternate necessary conditions. For the case of finite SNR

in AWGN channel, we come up with optimal 8 and 16 point constellations in terms of

both SER and BER. At the end we show further improvements in the case of fading

channel are possible for both 1-D and 2-D constellations if the transmitter optimally

adapts to the channel gain and allocates the transmit power and constellation.
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7.2 Future Work

Some interesting directions for future work are

• To obtain optimal 2-D constellations of large size at any fixed SNR, numerical

evaluation of symbol/bit error rate needs to be efficient to obtain close to

optimal solutions. Efficient ways to compute the symbol and bit error rate of

any constellation are there in literature which can be used to get close to best

solutions efficiently.

• The above work can be extended to multi dimensional constellations for both

symbol and bit error rate. Also the necessary conditions arrived at for asymp-

totic optimality can be extended to the case of multi dimensional constellations

• In our work we have assumed the data rate to be constant which can be relaxed

to obtain adaptive schemes. If the transmitter’s objective is to minimize the

error rate keeping the average power constraint satisfied and also keeping the

data rate above a threshold, optimal adaptive schemes based on our work

can be developed. Although adaptive schemes exist in literature but they are

suboptimal since they allow one to choose constellations only from fixed family

like QAM or PSK.
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